Кольца: определение, свойства, примеры. Простейшие свойства колец

называется порядком элемента а. Если такого n не существует, то элемент а называется элементом бесконечного порядка.

Теорема 2.7 (малая теорема Ферма). Если a G и G конечная группа, то a |G| =e .

Примем без доказательства.

Напомним, что каждая группа G, ° является алгеброй с одной бинарной операцией, для которой выполняются три условия, т.е. указанные аксиомы группы.

Подмножество G 1 множества G с той же операцией, что и в группе, называется подгруппой, если G 1 , ° является группой.

Можно доказать, что непустое подмножество G 1 множества G является подгруппой группы G, ° тогда и только тогда, когда множество G 1 вместе с любыми элементами а и b содержит элемент а° b -1 .

Можно доказать следующую теорему.

Теорема 2.8 . Подгруппа циклической группы является циклической.

§ 7. Алгебра с двумя операциями. Кольцо

Рассмотрим алгебры с двумя бинарными операциями.

Кольцом называется непустое множество R , на котором введены две бинарные операции + и ° , называемые сложением и умножением такие, что:

1) R; + является абелевой группой;

2) умножение ассоциативно, т.е. для a,b,c R: (a ° b ° ) ° c=a ° (b ° c) ;

3) умножение дистрибутивно относительно сложения, т.е. для

a,b,c R: a° (b+c)=(a° b)+(а ° c) и (а +b)° c= (a° c)+(b° c).

Кольцо называется коммутативным, если для a,b R: a ° b=b ° a .

Кольцо записываем как R; +, ° .

Так как R является абелевой (коммутативной) группой относительно сложения, то она имеет аддитивную единицу, которую обозначают через 0 или θ и называют нулем. Аддитивную обратную для a R обозначают через -а. При этом в любом кольце R имеем:

0 +x=x+ 0 =x, x+(-x)=(-x)+x=0 , -(-x)=x.

Тогда получаем, что

x° y=x° (y+ 0 )=x° y+ x° 0 x° 0 =0 для х R; x° y=(х + 0 )° y=x° y+ 0 ° y 0 ° y=0 для y R.

Итак, мы показали, что для х R: x ° 0 = 0° х = 0. Однако из равенства x ° y=0 не следует, что х= 0 или у= 0. Покажем это на примере.

Пример. Рассмотрим множество непрерывных на отрезке функций. Введем для этих функций обычные операции сложения и умножения: f(x)+ ϕ (x) и f(x)· ϕ (x) . Как легко видеть, получим кольцо, которое обозначается C . Рассмотрим функцию f(x) и ϕ (x) , изображенные на рис. 2.3. Тогда получим, что f(x) ≡ / 0 и ϕ (x) ≡ / 0, но f(x)· ϕ (x) ≡0.

Мы доказали, что произведение равно нулю, если равен нулю один из множителей: a ° 0= 0 для a R и на примере показали, что может быть, что a ° b= 0 для a ≠ 0 и b ≠ 0.

Если в кольце R имеем, что a ° b= 0, то а называется левым, а b правым делителями нуля. Элемент 0 считаем тривиальным делителем нуля.

f(x)·ϕ(x)≡0

ϕ (x)

Коммутативное кольцо без делителей нуля, отличных от тривиального делителя нуля, называют целостным кольцом или областью целостности.

Легко видеть, что

0 =x° (y+(-y))=x° y+x° (-y), 0 =(x+(-x))° y=x° y+(-x)° y

и поэтому x ° (-y)=(-x) ° y является обратным элементом для элемента х° у, т.е.

х ° (-у ) = (-х )° у = -(х ° у ).

Аналогично можно показать, что (- х) ° (- у) = х° у.

§ 8. Кольцо с единицей

Если в кольце R существует единица относительно умножения, то эту мультипликативную единицу обозначают через 1.

Легко доказать, что мультипликативная единица (как и аддитивная) единственна. Мультипликативную обратную для a R (обратную по умножению) будем обозначать через а-1 .

Теорема 2.9 . Элементы 0 и 1 являются различными элементами ненулевого кольца R .

Доказательство. Пусть R содержит не только 0. Тогда для a ≠ 0 имеем а° 0= 0 и а° 1= а ≠ 0, откуда следует, что 0 ≠ 1, ибо если бы 0= 1, то и их произведения на а совпадали бы.

Теорема 2.10 . Аддитивная единица, т.е. 0, не имеет мультипликативного обратного.

Доказательство. а° 0= 0° а= 0 ≠ 1 для а R . Таким образом, ненулевое кольцо никогда не будет группой относительно умножения.

Характеристикой кольца R называют наименьшее натуральное число k

такое, что a + a + ... + a = 0 для всех a R . Характеристика кольца

k − раз

записывается k=char R . Если указанного числа k не существует, то полагаем char R= 0.

Пусть Z – множество всех целых чисел;

Q – множество всех рациональных чисел;

R – множество всех действительных чисел; С – множество всех комплексных чисел.

Каждое из множеств Z, Q, R, C с обычными операциями сложения и умножения является кольцом. Эти кольца являются коммутативными, с мультипликативной единицей, равной числу 1. Эти кольца не имеют делителей нуля, следовательно, являются областями целостности. Характеристика каждого из этих колец равна нулю.

Кольцо непрерывных на функций (кольцо C ) тоже является кольцом с мультипликативной единицей, которая совпадает с функцией, тождественно равной единице на . Это кольцо имеет делители нуля, поэтому не является областью целостности и char C= 0.

Рассмотрим ещё один пример. Пусть М - непустое множество и R= 2M - множество всех подмножеств множества М. На R введем две операции: симметрическую разность А+ В= А В (которую назовём сложением) и пересечение (которое назовём умножением). Можно убедиться, что получили

кольцо с единицей; аддитивной единицей этого кольца будет , а мультипликативной единицей кольца будет множество М. Для этого кольца при любом А, А R , имеем: А+ А = А А= . Следовательно, charR = 2.

§ 9. Поле

Полем называется коммутативное кольцо, у которого ненулевые элементы образуют коммутативную группу относительно умножения.

Приведем прямое определение поля, перечисляя все аксиомы.

Поле – это множество P с двумя бинарными операциями «+ » и «° », называемыми сложением и умножением, такими, что:

1) сложение ассоциативно: для a, b, c R: (a+b)+c=a+(b+c) ;

2) существует аддитивная единица: 0 P, что для a P: a+0 =0 +a=a;

3) существует обратный элемент по сложению: для a P (-a) P:

(-a)+a=a+(-a)=0;

4) сложение коммутативно: для a, b P: a+b=b+a ;

(аксиомы 1 – 4 означают, что поле есть абелева группа по сложению);

5) умножение ассоциативно: для a, b, c P: a ° (b ° c)=(a ° b) ° c ;

6) существует мультипликативная единица: 1 P , что для a P:

1 ° a=a° 1 =a;

7) для любого ненулевого элемента (a ≠ 0) существует обратный элемент по умножению: для a P, a ≠ 0, a -1 P: a -1 ° a = a ° a -1 = 1;

8) умножение коммутативно: для a,b P: a ° b=b ° a ;

(аксиомы 5 – 8 означают, что поле без нулевого элемента образует коммутативную группу по умножению);

9) умножение дистрибутивно относительно сложения: для a, b, c P: a° (b+c)=(a° b)+(a° c), (b+c) ° a=(b° a)+(c° a).

Примеры полей:

1) R;+, - поле вещественных чисел;

2) Q;+, - поле рациональных чисел;

3) C;+, - поле комплексных чисел;

4) пусть Р 2 ={0,1}. Определим, что 1 +2 0=0 +2 1=1,

1 +2 1=0, 0 +2 0=0, 1×0=0×1=0×0=0, 1×1=1. Тогда F 2 = P 2 ;+ 2 , является полем и называется двоичной арифметикой.

Теорема 2.11 . Если а ≠ 0, то в поле единственным образом разрешимо уравнение а° х=b .

Доказательство . a° x=b a-1 ° (a° x)=a-1 ° b (a-1 ° a)° x=a-1 ° b

Содержащее единицу, называется кольцом с единицей . Обозначается единица, как правило, цифрой «1» (что отражает таковые свойства одноимённого числа) или иногда (например, в матричной алгебре), латинской буквой I или E .

Разные определения алгебраических объектов могут как требовать наличие единицы, так и оставлять её необязательным элементом. Односторонний нейтральный элемент единицей не называется. Единица единственна по общему свойству двустороннего нейтрального элемента.

Иногда единицами кольца называют его обратимые элементы , что может вносить путаницу.

Единица, нуль и теория категорий

Единица является единственным элементом кольца как идемпотентным, так и обратимым.

Обратимость

Обратимым называется всякий элемент u кольца с единицей, являющийся двусторонним делителем единицы, то есть:

∃ v 1: v 1 u = 1 {\displaystyle \exists v_{1}:v_{1}\,u=1} ∃ v 2: u v 2 = 1 {\displaystyle \exists v_{2}:u\,v_{2}=1} (a 1 + μ 1 1) (a 2 + μ 2 1) = a 1 a 2 + μ 1 a 2 + μ 2 a 1 + μ 1 μ 2 1 {\displaystyle (a_{1}+\mu _{1}{\mathbf {1} })(a_{2}+\mu _{2}{\mathbf {1} })=a_{1}a_{2}+\mu _{1}a_{2}+\mu _{2}a_{1}+\mu _{1}\mu _{2}{\mathbf {1} }}

с сохранением таких свойств как ассоциативность и коммутативность умножения. Элемент 1 будет являться единицей расширенной алгебры. Если в алгебре уже была единица, то после расширения она превратится в необратимый идемпотент.

С кольцом такое тоже можно проделать, например потому, что всякое кольцо является ассоциативной алгеброй над

Определение 2.5. Кольцом называют алгебру

R = (R, +, ⋅,0 , 1 ),

сигнатура которой состоит из двух бинарных и двух нульарных операций, причем для любых a, b, c ∈ R выполняются равенства:

  1. a+(b+c) = (a+b)+c;
  2. a+b = b+a;
  3. а + 0 = a;
  4. для каждого а ∈ R существует элемент а", такой, что a+a" = 0
  5. а-(b-с) = (а-b)-с;
  6. а ⋅ 1 = 1 ⋅ а = а;
  7. а⋅(b + с) =а⋅b + а⋅с, (b + с) ⋅ а = b⋅ а + с⋅а.

Операцию + называют сложением кольца , операцию умножением кольца , элемент 0 - нулем кольца , элемент 1 - единицей кольца .

Равенства 1-7, указанные в определении, называют аксиомами кольца . Рассмотрим эти равенства с точки зрения понятия группы и моноида .

Аксиомы кольца 1-4 означают, что алгебра (R, +, 0 ), сигнатура которой состоит только из операций сложения кольца + и нуля кольца 0 , является абелевой группой . Эту группу называют аддитивной группой кольца R и говорят также, что по сложению кольцо есть коммутативная (абелева) группа.

Аксиомы кольца 5 и 6 показывают, что алгебра (R, ⋅, 1), сигнатура которой включает только умножение кольца ⋅ и еди- единицу кольца 1, есть моноид. Этот моноид называют мультипликативным моноидом кольца R и говорят, что по умножению кольцо есть моноид.

Связь между сложением кольца и умножением кольца устанавливает аксиома 7, согласно которой операция умножения дистрибутивна относительно операции сложения.

Учитывая сказанное выше, отметим, что кольцо - это алгебра с двумя бинарными и двумя нульарными операциями R =(R, +, ⋅,0 , 1 ), такая, что:

  1. алгебра (R, +, 0 ) - коммутативная группа;
  2. алгебра (R, ⋅, 1 ) - моноид;
  3. операция ⋅ (умножения кольца) дистрибутивна относительно операции + (сложения кольца).

Замечание 2.2. В литературе встречается иной состав аксиом кольца, относящихся к умножению. Так, могут отсут- отсутствовать аксиома 6 (в кольце нет 1 ) и аксиома 5 (умножение не ассоциативно). В этом случае выделяют ассоциативные коль- кольца (к аксиомам кольца добавляют требование ассоциативности умножения) и кольца с единицей. В последнем случае добавля- добавляются требования ассоциативности умножения и существования единицы.

Определение 2.6. Кольцо называют коммутативным , если его операция умножения коммутативна.

Пример 2.12. а. Алгебра (ℤ, +, ⋅, 0, 1) есть коммутативное кольцо. Отметим, что алгебра (ℕ 0 , +, ⋅, 0, 1) кольцом не будет, поскольку (ℕ 0 , +) - коммутативный моноид, но не группа.

б. Рассмотрим алгебру ℤ k = ({0,1,..., k - 1}, ⊕ k , ⨀ k , 0,1) (к>1) с операцией ⊕ k сложения по модулю л и ⨀ k (умножения по модулю л). Последняя аналогична операции сложения по модулю л: m ⨀ k n равно остатку от деления на k числа m ⋅ n. Эта алгебра есть коммутативное кольцо, которое называют кольцом вычетов по модулю k.

в. Алгебра (2 A , Δ, ∩, ∅, А) - коммутативное кольцо, что следует из свойств пересечения и симметрической разности множеств.

г. Пример некоммутативного кольца дает множество всех квадратных матриц фиксированного порядка с операциями сложения и умножения матриц. Единицей этого кольца является единичная матрица, а нулем - нулевая.

д. Пусть L - линейное пространство. Рассмотрим множество всех линейных операторов, действующих в этом пространстве.

Напомним, что суммой двух линейных операторов А и В называют оператор А + В , такой, что (А + В ) х = Ах + Вх , х L .

Произведением линейных операторов А и В называют линей- линейный оператор АВ , такой, что (АВ )х = А (Вх ) для любого х L .

Используя свойства указанных операций над линейными операторами, можно показать, что множество всех линейных операторов, действующих в пространстве L , вместе с операциями сложения и умножения операторов образует кольцо. Нулем этого кольца служит нулевой оператор , а единицей - тождественный оператор .

Это кольцо называют кольцом линейных операторов в линейном пространстве L. #

Аксиомы кольца называют также основными тождествами кольца . Тождество кольца - это равенство, ливость которого сохраняется при подстановке вместо фигурирующих в нем переменных любых элементов кольца. Основные тождества постулируются, и из них затем могут быть выведе- выведены как следствия другие тождества. Рассмотрим некоторые из них.

Напомним, что аддитивная группа кольца коммутативна и в ней определена операция вычитания .

Теорема 2.8. В любом кольце выполняются следующие тождества:

  1. 0 ⋅ а = a ⋅ 0 = 0 ;
  2. (-a) ⋅ b = -(a ⋅ b) = a ⋅ (-b);
  3. (a-b) ⋅ c = a ⋅ c - b ⋅ c, c ⋅ (a-b) = c ⋅ a - c ⋅ b.

◀Докажем тождество 0 ⋅ а = 0 . Запишем для произвольного а:

a+0 ⋅ a = 1 ⋅ a + 0 ⋅ a = (1 +0 ) ⋅ a = 1 ⋅ a = a

Итак, а + 0 ⋅ а = а. Последнее равенство можно рассматривать как уравнение в аддитивной группе кольца относительно неизвестного элемента 0 ⋅ а. Так как в аддитивной группе любое уравнение вида а + х = b имеет единственное решение х=b - а, то 0 ⋅ а = а - а = 0 . Тождество а⋅ 0 = 0 доказывается аналогично.

Докажем теперь тождество - (a ⋅ b) = a ⋅ (-b). Имеем

a ⋅ (-b)+a ⋅ b = a ⋅ ((-b) + b) = a ⋅ 0 = 0 ,

откуда а ⋅ (-b) = -(а ⋅ b). Точно так же можно доказать, что (-a) ⋅ b = -(a ⋅ b).

Докажем третью пару тождеств. Рассмотрим первое из них. С учетом доказанного выше имеем

а ⋅ (b - с) = a ⋅ (b+(-c)) = a ⋅ b + a ⋅ (-c) =a ⋅ b - a ⋅ c,

т.е. тождество справедливо. Второе тождество этой пары доказывается аналогично.

Следствие 2.1 . В любом кольце справедливо тождество (-1 ) ⋅ х = x ⋅ (-1 ) = -x.

◀Указанное следствие вытекает из второго тождества теоремы 2.8 при a = 1 и b = x.

Первые два тождества из доказанных в теореме 2.8 выражают свойство, называемое аннулирующим свойством нуля в кольце. Третья же пара тождеств указанной теоремы выражает свойство дистрибутивности операции умножения кольца относительно операции вычитания. Таким образом, производя вычисления в любом кольце, можно раскрывать скобки и менять знаки так же, как и при сложении, вычитании и умножении действительных чисел.

Ненулевые элементы а и b кольца R называют делителями нуля , если а ⋅ b = 0 или b ⋅ а = 0 . Пример кольца с делителем нуля дает любое кольцо вычетов по модулю k, если k - составное число. В этом случае произведение по модулю k любых тип, дающих при обычном перемножении число, кратное k, будет равно нулю. Например, в кольце вычетов по модулю 6 элементы 2 и 3 являются делителями нуля, поскольку 2 ⨀ 6 3 = 0. Другой пример дает кольцо квадратных матриц фиксированного порядка (не меньшего двух). Например, для матриц второго порядка имеем

При отличных от нуля а и b приведенные матрицы являются делителями нуля.

По умножению кольцо является только моноидом. Поставим вопрос: в каких случаях кольцо по умножению будет группой? Прежде всего заметим, что множество всех элементов кольца, в котором 0 1 , не может образовывать группы по умножению, так как нуль не может иметь обратного. Действительно, если предположить, что такой элемент 0" существует, то, с одной стороны, 0 ⋅ 0" = 0" ⋅ 0 = 1 , а с другой - 0 ⋅ 0" = 0" ⋅ 0 = 0 , откуда 0 = 1. Это противоречит условию 0 1 . Таким образом, поставленный выше вопрос можно уточнить так: в каких случаях множество всех ненулевых элементов кольца образует группу по умножению?

Если в кольце имеются делители нуля, то подмножество всех ненулевых элементов кольца не образует группы по умножению уже хотя бы потому, что это подмножество не замкнуто относительно операции умножения, т.е. существуют ненулевые элементы, произведение которых равно нулю.

Кольцо, в котором множество всех ненулевых элементов по умножению образует группу, называют телом , коммутативное тело - полем , а группу ненулевых элементов тела (поля) по умножению - мультипликативной группой этого тела (поля ). Согласно определению, поле есть частный случай кольца, в котором операции обладают дополнительными свойствами. Выпишем все свойства, выполнение которых требуется для операций поля. Их еще называют аксиомами поля .

Поле есть алгебра F = (F, +, ⋅, 0, 1), сигнатура которой состоит из двух бинарных и двух нульарных операций, причем справедливы тождества:

  1. a+(b+c) = (a+b)+c;
  2. a+b = b+a;
  3. a+0 = a;
  4. для каждого а ∈ F существует элемент -а, такой, что a+ (-a) = 0;
  5. a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c;
  6. a ⋅ b = b ⋅ a
  7. a ⋅ 1 = 1 ⋅ a = a
  8. для каждого а ∈ F, отличного от 0, существует элемент а -1 , такой, что а ⋅ а -1 = 1;
  9. a ⋅ (b+c) = a ⋅ b + a ⋅ c.

Пример 2.13. а. Алгебра (ℚ, +, ⋅, 0, 1) есть поле, называемое полем рациональных чисел .

б. Алгебры (ℝ , +, ⋅, 0, 1) и (ℂ, +, ⋅, 0, 1) есть поля, называемые полями действительных и комплексных чисел соответственно.

в. Примером тела, не являющегося полем, может служить алгебра кватернионов . #

Итак, мы видим, что известным законам сложения и умножения чисел соответствуют аксиомы поля. Занимаясь числовыми расчетами, мы „работаем в полях", а именно имеем дело преимущественно с полями рациональных и вещественных чисел, иногда „переселяемся" в поле комплексных чисел.

Определение 4.1.1. Кольцо (K , +, ) – это алгебраическая система с непустым множеством K и двумя бинарными алгебраическими операциями на нем, которые будем называть сложением и умножением . Кольцо является абелевой аддитивной группой, а умножение и сложение связаны законами дистрибутивности: (a + b )  c = a c + b c и с  (a + b ) = c a + c b для произвольных a , b , c K .

Пример 4.1.1. Приведем примеры колец.

1. (Z , +, ), (Q , +, ), (R , +, ), (C , +, ) – соответственно кольца целых, рациональных, вещественных и комплексных чисел с обычными операциями сложения и умножения. Данные кольца называются числовыми .

2. (Z /n Z , +, ) – кольцо классов вычетов по модулю n N с операциями сложения и умножения.

3. Множество M n (K ) всех квадратных матриц фиксированного порядка n N с коэффициентами из кольца (K , +, ) с операциями матричного сложения и умножения. В частности, K может быть равно Z , Q , R , C или Z /n Z приn N .

4. Множество всех вещественных функций, определенных на фиксированном интервале (a ; b ) вещественной числовой прямой, с обычными операциями сложения и умножения функций.

5. Множество полиномов (многочленов) K [x ] с коэффициентами из кольца (K , +, ) от одной переменной x с естественными операциями сложения и умножения полиномов. В частности, кольца полиномов Z [x ], Q [x ], R [x ], C [x ], Z /n Z [x ] приn N .

6. Кольцо векторов (V 3 (R ), +, ) c операциями сложения и векторного умножения.

7. Кольцо ({0}, +, ) с операциями сложения и умножения: 0 + 0 = 0, 0  0 = = 0.

Определение 4.1.2. Различают конечные и бесконечные кольца (по числу элементов множества K ), но основная классификация ведется по свойствам умножения. Различают ассоциативные кольца, когда операция умножения ассоциативна (пункты 1–5, 7 примера 4.1.1) и неассоциативные кольца (пункт 6 примера 4.1.1: здесь ,). Ассоциативные кольца делятся на кольца с единицей (есть нейтральный элемент относительно умножения) и без единицы , коммутативные (операция умножения коммутативна) и некоммутативные .

Теорема 4.1.1. Пусть (K , +, ) – ассоциативное кольцо с единицей. Тогда множество K * обратимых относительно умножения элементов кольца K – мультипликативная группа.

Проверим выполнение определения группы 3.2.1. Пусть a , b K * . Покажем, что a b K * .  (a b ) –1 = b –1  а –1  K . Действительно,

(a b )  (b –1  а –1) = a  (b b –1)  а –1 = a  1  а –1 = 1,

(b –1  а –1)  (a b ) = b –1  (а –1  a )  b = b –1  1  b = 1,

где а –1 , b –1  K – обратные элементы к a и b соответственно.

1) Умножение в K * ассоциативно, так как K – ассоциативное кольцо.

2) 1 –1 = 1: 1  1 = 1  1  K * , 1 – нейтральный элемент относительно умножения в K * .

3) Для  a K * , а –1  K * , так как (а –1)  a = a  (а –1) = 1
(а –1) –1 = a .

Определение 4.1.3. Множество K * обратимых относительно умножения элементов кольца (K , +, ) называют мультипликативной группой кольца .

Пример 4.1.2. Приведем примеры мультипликативных групп различных колец.

1. Z * = {1, –1}.

2. M n (Q ) * = GL n (Q ), M n (R ) * = GL n (R ), M n (C ) * = GL n (C ).

3. Z /n Z * – множество обратимых классов вычетов, Z /n Z * = { | (k , n ) = 1, 0  k < n }, при n > 1 | Z /n Z * | = (n ), где – функция Эйлера.

4. {0} * = {0}, так как в данном случае 1 = 0.

Определение 4.1.4. Если в ассоциативном кольце (K , +, ) с единицей группа K * = K \{0}, где 0 – нейтральный элемент относительно сложения, то такое кольцо называют телом или алгеброй с делением . Коммутативное тело называется полем .

Из данного определения очевидно, что в теле K *   и 1  K * , значит, 1  0, поэтому минимальное тело, являющееся полем, состоит из двух элементов: 0 и 1.

Пример 4.1.3.

1. (Q , +, ), (R , +, ), (C , +, ) – соответственно числовые поля рациональных, вещественных и комплексных чисел.

2. (Z /p Z , +, ) – конечное поле из p элементов, если p – простое число. Например, (Z /2Z , +, ) – минимальное поле из двух элементов.

3. Некоммутативным телом является тело кватернионов – совокупность кватернионов , то есть выражений вида h = a + bi + cj + dk , где a , b , c , d R , i 2 = = j 2 = k 2 = – 1, i j = k = – j i , j k = i = – k j , i k = – j = – k i , с операциями сложения и умножения. Кватернионы складываются и перемножаются почленно с учетом указанных выше формул. Для всякого h  0 обратный кватернион имеет вид:
.

Различают кольца с делителями нуля и кольца без делителей нуля.

Определение 4.1.5. Если в кольце найдутся ненулевые элементы a и b такие, что a b = 0, то их называют делителями нуля , а само кольцо – кольцом с делителями нуля . В противном случае кольцо называется кольцом без делителей нуля .

Пример 4.1.4.

1. Кольца (Z , +, ), (Q , +, ), (R , +, ), (C , +, ) – кольца без делителей нуля.

2. В кольце (V 3 (R ), +, ) каждый отличный от нуля элемент является делителем нуля, поскольку
для всех
V 3 (R ).

3. В кольце матриц M 3 (Z ) примерами делителей нуля являются матрицы
и
, так как A B = O (нулевая матрица).

4. В кольце (Z /n Z , +, ) с составным n = k m , где 1 < k , m < n , классы вычетов иявляются делителями нуля, так как.

Ниже приведем основные свойства колец и полей.

Непустое множество К, на котором заданы две бинарные операции-сложение (+) и умножение ( ), удовлетворяющие условиям:

1) относительно операции сложения К - коммутативнаятруппа;

2) относительно операции умножения К - полугруппа;

3) операции сложения и умножения связаны законом дистрибутивности, т. е. (a+b)с=ас+bс, с(a+b) =ca+cb для всех а, b, c K , называется кольцом (К,+, ).

Структура (К, +) называется аддитивной группой кольца. Если операция умножения коммутативна, т. е. ab=ba. для всех а , b , то кольцо называется коммутативным.

Если относительно операции умножения существует единичный элемент, который в кольце принято обозначать единицей 1,. то говорят, что К есть кольцо с единицей.

Подмножество L кольца называется подкольцом, если L - подгруппа аддитивной группы кольца и L замкнуто относительно операции умножения, т. е. для всех a, b L выполняется а+b L и ab L.

Пересечение подколец будет подкольцом. Тогда, как и в случае групп, подкольцом, порожденным множеством S K, называется пересечение всех подколец К, содержащих S.

1. Множество целых чисел относительно операций умножения и сложения (Z, +, )-коммутативное кольцо. Множества nZ целых чисел, делящихся на п, будет подкольцом без единицы при п>1.

Аналогично множество рациональных и действительных чисел - коммутативные кольца с единицей.

2. Множество квадратных матриц порядка п относительно-операций сложения и умножения матриц есть кольцо с единицей Е - единичной матрицей. При п>1 оно некоммутативное.

3. Пусть K-произвольное коммутативное кольцо. Рассмотрим всевозможные многочлены

с переменной х и коэффициентами а 0 , а 1 , а 2 , ..., а n , из К. Относительно алгебраических операций сложения и умножения многочленов- это коммутативное кольцо. Оно называется кольцом многочленов К от переменной х над кольцом К (например, над кольцом целых, рациональных, действительных чисел). Аналогично определяется кольцо многочленов K от т переменных как кольцо многочленов от одной переменной х т над кольцом K.



4. Пусть X - произвольное множество, К -произвольное кольцо. Рассмотрим множество всех функций f: Х К, определенных на множестве X со значениями в К Определим сумму и произведение функций, как обычно, равенствами

(f+g)(x)=f(x)+g(x); (fg)(x)=f(x)g(x),

где + и - операции в кольце К.

Нетрудно проверить, что все условия, входящие в определение кольца, выполняются, и построенное кольцо будет коммутативным, если коммутативно исходное кольцо K . Оно называется кольцом функций на множестве X со значениями в кольце К.

Многие свойства колец - это переформулированные соответствующие свойства групп и полугрупп, например: a m a n =a m + n , (а т) п =а тп для всех m , n и всех a .

Другие специфические свойства колец моделируют свойства чисел:

1) для всех a a 0=0 a=0;

2) .(-а)b=а(-b)=-(ab) ;

3) - a=(-1)a .

Действительно:

2) 0=a (аналогично (-a)b=-(ab));

3) используя второе свойство, имеем-a= (-a)1 =a(-1) = (-1)a .

Поле

В кольцах целых, рациональных и действительных чисел из того, что произведение ab=0, следует, что либо а =0, либо b =0. Но в кольце квадратных матриц порядка n >1 это свойство уже не выполняется, так как, например, = .

Если в кольце К ab=0 при а 0, b , то а называется левым, а b - правым делителем нуля. Если в К нет делителей нуля (кроме элемента 0, который является тривиальным делителем нуля), то K называется кольцом без делителей нуля.

1. В кольце функции f: R R на множестве действительных чисел R рассмотрим функции f 1 (x)=|x|+x; f 2 (x) =|x|-x. Для них f 1 (x) =0 при x и f 2 (x )=0 при x , а поэтому произведение f 1 (x) f 2 (x) - нулевая функция, хотя f 1 (x) и f 2 (x) . Следовательно, в этом кольце есть делители нуля.

2. Рассмотрим множество пар целых чисел (а, b), в котором заданы операции сложения и умножения:

(a 1 , b 1)+(a 2 , b 2)=(a 1 +a 2 , b 1 +b 2);

(a 1 , b 1)(a 2 , b 2)= (a 1 a 2 , b 1 b 2).

Это множество образует коммутативное кольцо с единицей (1,1) и делителями нуля, так как (1,0)(0,1)=(0,0).

Если в кольце нет делителей нуля, то в нем выполняется закон сокращения, т. е. ab=ac, а =с. Действительно, ab-ac=0 a(b-c)=0 (b-c)=0 b=c.

Пусть К - кольцо, с единицей. Элемент а называется обратимым, если существует такой элемент а -1 , для которого aa -1 =a -1 a=1 .

Обратимый элемент не может быть делителем нуля, так как. если ab =0 , то a -1 (ab) =0 (a -1 a)b=0 1b=0 b=0 (аналогично ba=0 ).

Теорема. Все обратимые элементы кольца К с единицей образуют группу относительно умножения.

Действительно, умножение в К ассоциативно, единица содержится во множестве обратимых элементов и произведение не выводит из множества обратимых элементов, так как если а и b обратимы, то
(аb) -1 =b -1 a -1 .

Важную алгебраическую структуру образуют коммутативные кольца К, в которых каждый ненулевой элемент обратим, т. е. относительно операции умножения множество K \{0} образует группу. В таких кольцах определены три операции: сложение, умножение и деление.

Коммутативное кольцо Р с единицей 1 0, в котором каждый ненулевой элемент обратим, называется полем.

Относительно умножения все отличные от нуля элементы поля образуют группу, которая называется мультипликативной группой поля.

Произведение аb -1 записывается в виде дроби и имеет смысл лишь при b 0 . Элемент является единственным решением уравнения bx=a. Действия с дробями подчиняются привычным для нас правилам:

Докажем, например, второе из них. Пусть х= и у= - решения уравнений bx=a, dy=c. Из этих уравнений следует dbx=da, bdy=bc bd(x+y)=da+bc t= - единственное решение уравнения bdt=da+bc.

1. Кольцо целых чисел не образует поля. Полем является множество рациональных и множество действительных чисел.

8.7. Задания для самостоятельной работы по главе 8

8.1. Определить, является ли операция нахождения скалярного произведения векторов n-мерного евклидового пространства коммутативной и ассоциативной. Обосновать ответ.

8.2. Определить, является ли множество квадратных матриц порядка n относительно операции умножения матриц, группой или моноидом.

8.3. Указать, какие из следующих множеств образуют группу относительно операции умножения:

а) множество целых чисел;

б) множество рациональных чисел;

в) множество действительных чисел, отличных от нуля.

8.4. Определить, какие из следующих структур образует множество квадратных матриц порядка n с определителем, равным единице: относительно обычных операций сложения и умножения матриц:

а) группу;

б) кольцо;

8.5. Указать, какую структуру образует множество целых чисел относительно операции умножения и сложения:

а) некоммутативное кольцо;

б) коммутативное кольцо;

8.6. Какую из перечисленных ниже структур образует множество матриц вида с действительными a и b относительно обычных операций сложения и умножения матриц:

а) кольцо;

8.7. Какое число нужно исключить из множества действительных чисел, чтобы оставшиеся числа образовывали группу относительно обычной операции умножения:

8.8. Выяснить, какую из следующих структур образует множество, состоящее из двух элементов a и e, с бинарной операцией, определенной следующим образом:

ee=e, ea=a, ae=a, aa=e.

а) группу;

б) абелеву группу.

8.9. Являются ли кольцом четные числа относительно обычных операций сложения и умножения? Обосновать ответ.

8.10. Является ли кольцом совокупность чисел вида a+b , где a и b – любые рациональные числа, относительно операций сложения и умножения? Ответ обосновать.

 
Статьи по теме:
Модные головные уборы весна-лето
Головной убор для женщины не только способ защиты от холода или солнца, но и стильный аксессуар, который способен как дополнить образ, так и испортить все впечатление от него. Если же сделать выбор правильно и шагать в ногу со временем, то женские головны
Программа по первичной профилактике спида,вича
Главная > Программа Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «ЧЕЛЯБИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Программа ПО ПрофилактикЕ РАСПРОСТРАНЕНИЯ ВИЧ-ИНФЕКЦИИ В ГОУ ВПО «Чел
Делаем красивые топиарии своими руками Применение воздушной органзы
Популярный вид искусства – топиарий - был известный еще в Древнем Риме. Достаточно распространен он и сейчас во многих европейских странах, в том числе и в нашей стране. Считается, что «дерево счастья», так его ласково называют в Европе, приносит в дом б
Творожная маска для сухой и жирной кожи лица в домашних условиях Творожная маска для сухой кожи лица
Читайте в статье: Маска из творога – очень полезная процедура, известная еще со времен Древней Греции: в те времена греки избавлялись с помощью творога не только от косметических недостатков, но и лечили некоторые болезни. В наши дни данный кисломолочный